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Abstract

The Modicon Communication Bus (Modbus) proto-
col is one of the most commonly used protocols in in-
dustrial control systems. Modbus was not designed
to provide security. This paper confirms that the
Modbus protocol is vulnerable to flooding attacks.
These attacks involve injection of commands that re-
sult in disrupting the normal operation of the con-
trol system. This paper describes a set of experi-
ments that shows that an anomaly-based change de-
tection algorithm and signature-based Snort thresh-
old module are capable of detecting Modbus flooding
attacks. In comparing these intrusion detection tech-
niques, we find that the signature-based detection re-
quires a carefully selected threshold value, and that
the anomaly-based change detection algorithm may
have a short delay before detecting the attacks de-
pending on the parameters used. In addition, we also
generate a network traffic dataset of flooding attacks
on the Modbus control system protocol.

Keywords: Modbus, Denial-of-Service (DoS), Change
Detection, Intrusion Detection

1 Introduction

Supervisory Control and Data Acquisition (SCADA)
systems are used in many industrial sites to remotely
monitor and activate motors, pumps and other equip-
ment that run water processing plants, factories, re-
fineries and electricity substations.

In recent years control systems have been upgraded
from the standard serial bus systems to modern
Transmission Control Protocol (TCP)/Internet Pro-
tocol (IP) based systems. This has resulted in cost
savings as standard Information and Communications
Technology (ICT) Ethernet cabling can be used, but
it has also provided the convenience of allowing these
control systems to be connected to existing data net-
works. The trade off in this course of action, that is
connecting these control systems to the Internet ex-
poses them to existing cyber attacks. Traditionally,
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control system devices and protocols have not been
designed to withstand malicious attacks. It is impor-
tant to determine how vulnerable these systems are
and how to detect if an attack is being conducted on
these systems so that appropriate action can be taken
before serious damage occurs.

The published work regarding vulnerabilities and
attacks on industrial control systems is grow-
ing (Huitsing et al. 2008, Morris et al. 2013). How-
ever, to the best of our knowledge, there is currently
no work in the public domain that practically demon-
strates such attacks and their detection. This paper
concentrates on the common Modicon Communica-
tion Bus (Modbus) control protocol that has been
adapted to run over TCP/IP. It has not been de-
signed to provide any security properties, therefore
it is vulnerable to many types of attack. This pa-
per focuses on flooding attacks as they are the easiest
attack to conduct on a SCADA system. The work
also explores different detection techniques that can
be used to identify when an attack is being conducted.
The contribution of this paper is two-fold. Firstly, we
show that it is possible to use flooding attacks to suc-
cessfully subvert a control system using Modbus. Sec-
ondly, we show that the anomaly-based change detec-
tion algorithm and the signature-based Snort thresh-
old module are capable of detecting a Modbus flood-
ing attack. Additionally, we also provide a set of ex-
periments that results in a network traffic dataset of
flooding attacks on the Modbus control system proto-
col. These datasets can be used to validate a variety
of intrusion detection algorithms.

This paper is divided into seven sections. Section
1 introduces the paper and gives a brief description
of the existing Modbus over TCP protocol. Section 2
reviews related work on Modbus vulnerabilities and
attack detection. Section 3 describes the flooding
attack and the software that was developed to suc-
cessfully conducted the attack on our experimental
system. Section 4 introduces the theory behind the
two intrusion detection mechanisms that are used to
detect the flooding attacks. Section 5 describes the
experimental methodologies used to generate a range
of datasets that we present and analyse in Section 6.
Section 7 concludes the paper.

1.1 Modbus

Devices connected using the Modbus protocol com-
municate with each other using a master-slave or
server-client configuration (Modbus Organization Inc.
2006). The master device controls all the activities
such as the transmission and monitoring. It initiates
the queries while the connected devices or slaves, re-
spond to the queries. For this reason, the Modbus
protocol is referred to as a single master protocol. The
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master device can either send a broadcast message to
all connected and configured slave devices, or poll a
slave device individually (Modbus Organization Inc.
2006).

Modbus packets also have function codes which
specify the type of operation requested. Every
Modbus device has a register map of functions that
are used to monitor, configure and control module in-
put/output. There are two main variants of Modbus
protocol, Modbus Serial and Modbus/TCP. For this
paper, we will focus on Modbus/TCP, and for the
remainder of this paper references to Modbus mean
Modbus/TCP.

Modbus is a communication protocol designed to
allow communication of industrial equipment such as
computers, sensors, Programmable Logic Controllers
(PLCs) and other physical input/output devices over
the IP/Ethernet network. TCP/IP and Ethernet are
used in carrying Modbus message structure. Modbus
is a protocol embedded inside the TCP/IP frames of
Ethernet (Modbus Organization Inc. 2006). Figure 1
depicts the structure of a Modbus IP Message known
as Modbus Application Data Unit (ADU).

The message structure of Modbus ADU is shown
in Figure 1, and is divided into two parts (Morris
et al. 2013). The first, is the Modbus Application
Protocol (MBAP) Header, which consists of:

1. Transaction Identifier (2 bytes) - Used for syn-
chronisation between server and client messages.

2. Protocol Identifier (2 bytes) - Set to 0 for
Modbus, for potential future use.

3. Length Field (2 bytes) - Used to define the num-
ber of remaining bytes in this message structure.

4. Unit Identifier (1 byte) - Slave address of de-
vice the message structure is to be sent to. For
Modbus, address of slave device is the IP address
and therefore the Unit Identifier is set to 0xFF.

The second part of a Modbus ADU message is a typ-
ical Modbus Protocol Data Unit (PDU) message. It
consists of:

1. Function Code (1 Byte) - Modbus supported
functions.

2. Function Data (n bytes) - Data accompanying
the Function Code as a response or command.

2 Related Work

This section provides an overview of previous work
undertaken on Modbus, and Intrusion Detection Sys-
tem (IDS) for Modbus protocols. The Modbus pro-
tocol provides no security for messages. Messages are
passed in the clear providing no confidentiality, or
message integrity (Modbus Organization Inc. 2006).
Huitsing et al. (Huitsing et al. 2008) provides a
compilation of attack taxonomy on the Modbus pro-
tocol, with the analysis focusing on Modbus serial
and TCP protocols. According to the research, the
corresponding targets include the master, field device
slaves, network communication links and messages.
Huitsing et al. outlines that Modbus attacks consist

of protocol specification attacks, which are common
to all Modbus implementations. A total of 28 at-
tacks were identified for Modbus protocols. Some of
these attacks include spoofing, Modbus network scan-
ning, baseline response replay, and direct slave con-
trol. Modbus flooding attack was not included in the
list of attacks presented in Huitsing et al.. Further-
more, the paper does not discuss any practical analy-
sis of the attacks.

Queiroz et al. (Queiroz et al. 2009) conducted a
security evaluation on a simulated water treatment
SCADA system using a Distributed Denial-of-Service
(DDoS) attack. The work demonstrated how mali-
cious attackers have the ability to disrupt the con-
trol and operation of a SCADA system using Modbus.
The main aim of the work by Queiroz et al. was to
propose a testbed architecture, and only a DDoS at-
tack was discussed with no form of detection mecha-
nism discussed.

To detect flooding attacks on the Modbus proto-
col, an IDS may be employed. An IDS is a software or
hardware mechanism that detects misuse or unautho-
rised actions (Mell 2001). An example of a network
IDS is Snort. Cheung et al. (Cheung et al. 2007) de-
veloped a model based detection approach for moni-
toring Modbus networks using Snort. More recently,
Morris et al. (Morris et al. 2013) provided a set of 50
signature for Modbus and Modbus over serial links.
These rules were developed to detect malicious activ-
ities on industrial control systems using the Modbus
protocol specifications. However, no practical analy-
sis or implementation of these rules were presented by
Morris et al..

With Modbus as the de facto industrial commu-
nications protocol, and its widespread application
in SCADA systems, an analysis and evaluation of
Modbus flooding attacks is still considered an open
problem. We focus on Modbus, and the use of
anomaly-based, and signature-based detection tech-
niques, to detect the onset of malicious activity aiming
to disrupt normal operational control. We implement
and analyse flooding specific rules and attacks on the
Modbus protocol.

3 Modbus Flooding Attack

Modbus flooding attack is defined as one where the
attacker is able to inject packets into the local net-
work connecting the Human Machine Interface (HMI)
and the control system and disrupting its normal op-
eration. The attacker does not attempt to prevent
messages from reaching the control system, it merely
sends a larger than normal number of messages with
selected function codes. The aim of the attacker is to
control the system through this flood of messages and
to effectively drown out legitimate commands from
the HMI.

The Modbus protocol is particularly susceptible
to this type of attack because the messages in the
Modbus protocol do not include any authentication
mechanisms that will allow the detection and rejec-
tion of injected false packets. Modbus messages also
do not have any inherent checksum or integrity check-
ing mechanisms, so it is much easier for the attacker
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Figure 2: TCP Modbus Hacker Program

to flood the local network with false Modbus messages
that the control system will accept.

For our experiments, we have developed software
to conduct a flooding attack on a control system. This
is described in the following section.

3.1 TCP Modbus Hacker

A simple Java application, TCP Modbus Hacker!, was
written to conduct a flooding attack on a Modbus
control network. The Java application has two main
functions; reading, and writing registers on the con-
trol system. These registers represent system actua-
tors such as pumps and flow controls, as well as sen-
sors such as water level sensors and temperature sen-
sors. The software has the ability to query all the
possible system registers to determine the active reg-
isters. This initial scan is important, as unfamiliar
attackers will not know what registers are used by a
particular control system. The software also allows
an attacker to write to a single coil or multiple regis-
ters. As a result, the attacker can send commands to
the control system that will be acted upon. The TCP
Modbus Hacker has the ability to alter the speed of
the commands sent to the target system by introduc-
ing a configurable sleep time in milliseconds between
each command sent. The TCP Modbus Hacker also
has the ability to pause and resume the attack at any
time.

When the TCP Modbus Hacker is run against the
target PLC, the PLC receives correct commands from
the LabView HMI program at the same time. The
TCP Modbus Hacker can generate process commands
faster than the LabView HMI, and while the control
system still tries to execute all the commands it re-
ceives, inevitably the control system only acts on the
commands generated by the TCP Modbus Hacker.
Figure 2 gives the graphical user interface for the TCP
Modbus Hacker program.

1The authors acknowledge Vinh Tung Le and Pedram Moham-
madian for implementing the TCP Modbus Hacker application

4 Modbus Flooding Attack Detection

This section presents the two attack detection tech-
niques viz. anomaly-based detection (change de-
tection algorithm) and signature-based detection
(Snort), used for detecting the proposed Modbus
flooding attacks.

4.1 Anomaly—based Detection

The onset of an anomalous activity such as flooding-
based Denial-of-Service (DoS) attack, is generally ac-
companied by a change in the statistical properties
of the parameters indicating the anomaly. Hence, the
problem of detecting such anomalous activities can be
transformed into a change detection problem with the
aim to detect changes in the observed parameters with
minimal delay and false detection rate (Tartakovsky
et al. 2006a,b).

In order to detect such abrupt changes in the pa-
rameters being observed, various change detection
techniques have been proposed and applied in differ-
ent domains such as finance, network, image process-
ing and seismology. Amongst all the different tech-
niques that have been proposed, moving average, Cu-
mulative Sum (CUSUM) and spectral analysis, are
the most commonly used to detect anomalous net-
work behaviour such as a flooding attack. The change
detection technique used in this paper is a variant
of the moving average technique called Exponentially
Weighted Moving Average (EWMA). EWMA was
chosen because of its simplicity, flexibility, robustness
and effectiveness, especially in detecting high inten-
sity attacks (Siris & Papagalou 2006) such as flooding-
based attacks. It also has a lower false positive rate
as compared to CUSUM for large dataset samples, or
When)ever the parameters are estimated (Khoo et al.
2011).

Change Detection Algorithm The change detec-
tion algorithm used in this paper, EWMA, exam-
ines the value of the observed parameter and deter-
mines if it has exceeded a particular threshold value.
In comparison to other static threshold-based tech-
niques, EWMA makes use of a dynamic (adaptive)
threshold. This adaptive threshold is based on the
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estimated mean of the observed parameter, which in
turn is computed from the recent observations. The
computed threshold at every sampling interval is then
used to make decisions about the changes detected
in the parameter of interest, incoming TCP Modbus
packets in this case.

Let z; represent the number of TCP Modbus pack-
ets observed in the time interval ¢, and p;_1 represents
an average packet rate computed from measurements
prior to t. Time t is a cardinal number and indicates a
sampling time instance of the time series, rather than
an actual time stamp. A significant change in xz; is
indicated if,

xr = (1+n)p—1 (1)
where 1 > 0 is a parameter indicating the fractional
change from the mean (u) that constitutes a ‘change’
or an indication of the anomalous behaviour of z; i.e.
number of incoming Modbus packets. It is to be noted
that the change detection condition Equation 1 is used
only to flag positive changes in the observed parame-
ters.

The mean value p; of the parameter can be
estimated, either using a sliding window, or via
an EWMA of its previous occurrences until that
time interval. The EWMA technique gives a max-
imum weight to the most recent observation, and
an exponentially decreasing weight to older observa-
tions (Roberts 2000). In this paper, EWMA tech-
nique is used to calculate the mean value for the pa-
rameter of interest at each sampling time interval.
Thus, the EWMA p; of the parameter z;, as first
studied by Roberts 2000, can be written as:

e = Aze + (1= A1 (2)
where

e 1, is number of packets observed at a time period
t.

e 1 is the EWMA value of z; at a time period t¢.

e )\ is the EWMA factor with a value between 0
and 1.

The value of z; can either be an individually ob-
served value, or an average computed using a given
sampling period and technique. The value of A\ de-
termines the relative weight given to the most recent
values of the mean parameter value computed before
the current time interval.

Instead of flagging a change in the parameter being
observed with every single occurrence of the thresh-
old condition (Equation 1), the change detection tech-
nique has been slightly modified so that it triggers an

alarm (an actual change) only after a minimum num-
ber of consecutive occurrences of threshold condition
are detected. This is done to minimise the false alarms
that would potentially arise due to erratic fluctuations
in the number of packets being observed. Thus, an
alarm is triggered when there are k consecutive time
intervals for which the change detection condition oc-
curs before flagging an actual change in the observed
parameter.

t

Yo lazaemmo 2k (3)
j=t—(k—1)

where k£ > 1 is a parameter indicating the number
of consecutive time intervals for which the change de-
tection condition is violated before flagging an actual
change in the observed parameter.

The following section presents alternate signature-
based attack detection technique using Snort.

4.2 Signature—based Detection

Snort (Roesch 1999) is an open source signature-based
network IDS. Due to its wide deployment, Snort has
become the de facto standard for intrusion detection.
Snort captures network traffic utilising libpcap or win-
pcap libraries (depending on the platform it is de-
ployed on) and decodes it. The purpose of the decode
is to identify the type of network traffic. The de-
coded buffer is then made accessible to one or more
Snort preprocessors. Preprocessors operate on the de-
coded buffer to perform appropriate transformations
to the buffer. In the work presented in this paper, the
Modbus preprocessor (Peterson 2009) is used. The
transformed buffer is subsequently passed to the Snort
detection engine, which detects traffic matching a sig-
nature or rule to generate alerts. Snort alerts may be
generated by preprocessors or the detection engine,
and specific detection rules can be specified to suit
deployment.

Thus, similar to the change detection threshold
discussed in Section 4.1, Snort rule thresholds can be
applied as part of a Snort rule or as a stand-alone
rule. Thresholds are applied to Snort rules to detect
any changes in parameters which result from anoma-
lous traffic such as a flooding-based DoS traffic.

The typical format of the Snort threshold? rule
is as follows threshold: type threshold, track
<by_src|by_dst>, count <c>, seconds <s>;. The

2The threshold rule has been deprecated and will not be
available in future. However additional event processing filter
(event_filter) is available to implement threshold checking.



threshold rate may be tracked by the traffic source
address (by_src) or destination (by_dst) address, for a
count (c¢), which specifies the number of alerts within
the time specified as time in seconds (s).

To prevent the false-positive paradox, the thresh-
old values employed in the Snort rule need to be based
on some statistical mean of normal traffic. Alterna-
tively, the threshold values may be derived experi-
mentally, to ensure that no false positive alerts are
generated as a result of the threshold rules.

Since the attacks described in Section 3.1, floods
TCP port 502 to write to a single coil (Modbus func-
tion code 0x05), the Snort rules may be refined fur-
ther to alert on specific Modbus traffic. As Snort
provides a Modbus preprocessor, specific rules can be
written to examine the contents of the Modbus pay-
load. Modbus TCP packets contain a MBAP Header
and PDU as illustrated in Figure 1, and patterns in
these may be matched using the content keyword.

The typical content option is in the format
(content: [!]‘‘<content string>’’;). Addi-
tionally modifiers such as offset, depth and
byte_test are used to specify the offset into the pay-
load, how far from the offset to search, and how many
bytes to convert to find the function code. Content
specific rules can be applied together with threshold
rules to get higher accuracy detection of the attacks

5 Experimental Set-up and Methodology

This section describes the experimental set-up and
methodology used for generating the attack and be-
nign traffic used in this paper.

5.1 Experimental Set-up

A typical SCADA architecture comprises a human op-
erator, a HMI, a Master Telemetry Unit (MTU), a
data communications network and Remote Teleme-
try Units (RTUs). The human operator monitors
the SCADA system and performs supervisory control
function via the HMI, which presents data and allows
for control inputs. The MTU transmits the control in-
formation and collates the data for presentation to the
HMI. The RTU receives control information via the
data communications network from the MTU and ma-
nipulates the field devices under its control. The RTU
is also responsible for acquiring data from field devices
and transmitting them to the MTU. The communi-
cation between the MTU and RTU is implemented
using a SCADA protocol.

In the case of the experimental set-up, as illus-
trated in Figure 3, the LabView application on the
Controller provides both the HMI and MTU func-
tionality. A conventional Ethernet network is utilised
as the data communications network. The Target
PLC using a National Instruments Compact RIO pro-
vides RTU functionality, and Modbus is utilised as the
SCADA protocol.

The experimental set-up used for generating the
required normal and attack traffic, consists of three
machines, a PLC and a layer 2 network switch con-
necting all the devices. Figure 3 gives an overview
of the experimental set-up. The three machines used
in the testbed are standard PCs with 3.0 GHz In-
tel Core2 processors, 4 GB of memory, and a main
1 Gb Network Interface Card (NIC). Of these three
machines, one is used as an Attacker and runs an in-
stance of the TCP Modbus Hacker program previous
described (see Section 3.1 for details). The two re-
mainder machines are used to act like a Controller
(running LabView HMI) and Monitor Boz (running

tcpdump) respectively. The Target PLC is a National
Instruments Compact RIO 9074, with a Universal
Analog Input Card (NI9219), a 20mA Analog Input
Card (NI19203), a 10V Analog Output Card (N19263),
and a High Speed 24V Digital Output Card (NI19474
This PLC controls the process setup show in Fig-
ure 5. The process setup is of two tanks, a lower
reservoir tank and an upper holding tank. A pump
cycles water into the upper tank, which then drains
back into the lower tank. Various instrumentation
measure the temperature, pressure and level of each
tank, with flow indicators measuring the flow of wa-
ter in both pipelines. The flow control valve controls
the flowback of water into the lower reservoir. For
this paper, we launch a packet flooding attack on the
pump in an attempt to control the pump. The HMI,
for this process setup is shown in Figure 4. Built in
LabView, it shows the controllers view of the process.

élé
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Figure 5: Process and Instrumentation Diagram

5.2 Methodology

The experiment was conducted with two parties, the
Controller and Attacker over a period of 180 seconds,
using the set-up shown in Figure 3. The Controller
attempted to control the pump, shown in Figure 5,
with it being on (state 1) for the first 30 seconds, and
being turned off (state 0) for the next 30 seconds,
combining into a 60 second periodic cycle that was
repeated three times as shown in Figure 6a. The At-
tacker attempted to disrupt control of the pump by
launching a flooding attack using the TCP Modbus
Hacker program previously discussed (Section 3.1).

As shown in Figure 6b, the Attacker lays dormant
in the time period of 0-60 seconds. In the time period
of 61-90 seconds, the Attacker floods the PLC with
state 0 packets, opposite to the Controller state in the
same time period. When the Controller state switches
to state 0 at 91 seconds, the Attacker state changes
to 1 and begins to flood the PLC with state 1 pack-
ets. At 120 seconds, the Attacker returns to dormant
state, and ceases the attack. This experiment was re-
peated for different values of Sleep time, a parameter
within the TCP Modbus Hacker program, which al-
lows to set the inter-packet delay, in millisecond (ms),
between outgoing packets. For this paper, three sets
of experiments were conducted using Oms, 50ms and
100ms as the sleep time value. These values were cho-
sen to simulate the Attacker’s attempt to avoid detec-
tion, whilst still successfully flooding the Target PLC.
All the generated traffic for the three variants of the
flooding attack were captured on the Monitor Box.
The captured traffic was then analysed in an off-line
manner using two detection techniques viz. change
detection algorithm and signature-based attack de-
tection via Snort. The following section presents the
obtained results and analysis.
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Figure 6: Traffic Generation Scenario

6 Experimental Results and Analysis

The flooding attack launched on the Target PLC as
described in Section 5.2 was successful in overwhelm-
ing the PLC for the three variations in sleep time.
In the attack time period of 61 to 90 seconds of the
experiment, the pump was successfully turned off as
the Attacker was flooding the Target PLC with state
0 commands. The HMI on the Controller was still
showing the pump as running (state 1). In the time

period of 91 to 120 seconds, the Controller turned the
pump off by changing the pump state to 0. However,
the Attacker reversed the flooding attack state to 1,
and was successful in turning on the pump, whilst the
Controller HMI depicted the pump as turned off. The
Oms sleep time was the most responsive in changing
the running status of the pump and occurred within
1 to 2 seconds of launching the attack. The attacks
using a sleep time of 50ms and 100ms were also suc-
cessful in changing the running status of the pump.
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Figure 7: Modbus flooding attack detection using change detection algorithm

However, the Target PLC was relatively slower to re-
spond to these attacks.

This section presents the experimental results ob-
tained by running the anomaly-based change de-
tection algorithm and a signature-based detection
(Snort) against the attacks. It also presents a compar-
ative analysis on the two attack detection techniques.

6.1 Anomaly—based Detection

In this section, the change detection algorithm de-
scribed previously in Section 4.1 is used to detect the
flooding attacks. Different values for the four config-
urable parameters — n, A, k, T — were initially based
on the previous work done in change detection us-
ing EWMA (Montgomery 2007, Paul 2006, Khoo et
al. 2011, Siris & Papagalou 2006). These values were
then experimentally optimised to improve the detec-

tion accuracy. Once optimised, the values were kept
constant for all three attack datasets. Unless stated
otherwise, the values considered for these parameters
aren =025, A=0.98, k=2, T =5.

The experimental results obtained by running the
EWMA-based change detection algorithm on the
number of incoming packets to the target PLC are
shown in Figure 7. The graph plots number of pack-
ets on the left y-axis against time (sampled every 5
seconds). The output of the decision function is shown
on the right y-axis, with 0 indicating no-change (nor-
mal traffic) and 1 representing the change (attack)
detected in the number of incoming packets to the
PLC over a period of 180 seconds.

The change detection is able to successfully detect
all the three attacks with the decision function indi-
cating 1 for the attack period, as shown in Figures 7a,
7b and 7c. A small lag between the start of the attack
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Figure 8: Modbus flooding attack detection using Snort

at the 61°¢ second and the output of the decision func-
tion is due to the selected value of k, 2 in this case,
which flags a change only after 2 consecutive viola-
tions of the change detection condition (Equation 3).
Setting a lower value of k such as 1 would remove this
lag, however, would also result in flagging small fluc-
tuations in the observed traffic, thereby increasing the
number of false alarms.

A small dip is observed around the 95" second,
especially in Figures 7a and 7b. This is mainly due
to a switch in the attackers activity i.e. from trying
to turn-off the pump (flooding with packets with 0s)
to turn it on (flooding with packets with 1s), opposite
to the controllers activity. This switching of activity
from the attacker is accompanied by a delay in re-
sponse from the Target PL.C and hence a drop in the
number of incoming packets. This drop in the num-
ber of incoming packets affects the adaptive thresh-
old value in the attack with 50ms delay, Figure 7b,
which thereby causes the decision function momentar-
ily drop around the 100** second mark, before going
back to 1 and detecting the remainder of the attack.

5th

6.2 Signature—based Detection

An alternative to the anomaly-based detection using
the change detection algorithm, a signature-based de-
tection technique using Snort was also used. This
was primarily done to test if Snort, being the indus-
trial de-facto for intrusion detection, can be used to
detect the proposed flooding attack. The preliminary
results obtained using Snort with customised rules are
discussed below.

To enable Snort to detect the proposed Modbus
flooding attacks, the following rule was utilised:

alert tcp any any —> 10.10.10.12 502
(msg: "Modbus threshold violation";
5id:1000001; rev:1; priority:1;
threshold:type threshold, track by._dst,
count 50, seconds 1;).

This rule utilised the Modbus preprocessor for
Snort together with the threshold directive as de-
scribed in Section 4.2. The initial normal (non-attack)
network traffic, i.e. traffic between 0 s and 60 s (see
Figure 6) from the Controller to the TCP port 502
on the Target PLC was observed to be, on average,
42 packets per second. This value was adjusted ex-
perimentally to obtain the value of 50 packets per
second. Employing this value ensured that there were

no false alerts generated in the initial non-attack pe-
riod. Thus, the Snort rule threshold value employed
a count of 50 packets for 1 second period. These val-
ues are specific to the scenario, and will need to be
changed to suit the specific environment that Snort is
deployed in.

Figure 8 plots the number of alerts generated
against time in seconds. Using Snort with the afore-
mentioned rule, the Snort IDS was able to success-
fully detect the onset of anomalous activities in all the
three variants of the flooding attack. In the case of
attack with Oms sleep, the number of alerts triggered
were higher as compared to the attacks with 50ms and
100ms delay. This is speculated to be an artifact of
Snort, which uses a sliding-window-based time period
to perform the rate calculations and is used to de-
termine if there is an rule violation and subsequently
trigger an alert. Thus, with the Oms attack, as there
are a large number of packets violating the threshold
in comparison to the 50ms and 100ms attacks, there
are more of these sliding-windows triggering alerts.

It should also be noted that the number of alerts,
while interesting (and indicating a greater likelihood
of a flooding attack) should not detract from the fact
that any alerts should be investigated. A detailed
analysis of the use of a signature-based technique
needs further investigation and constitutes the future
work of this research.

6.3 Comparative Analysis

The two techniques used in this paper, anomaly-based
change detection algorithm and signature-based de-
tection via Snort, successfully demonstrate that ab-
normal activities started at the 60" second and fin-
ished at the 120" second. The two techniques, while
completely orthogonal, do possess their respective ad-
vantages and disadvantages. Whereas the signature-
based detection requires a predefined threshold which
is fixed, the change detection algorithm does not re-
quire any pre-defined threshold. Instead, the thresh-
old is adaptively calculated and changes continuously
with the observation time. In terms of implement-
ing the attack detection technique in a real-world
scenario, signature-based detection is easier to de-
ploy than the anomaly-based change detection algo-
rithm, as Snort already provides a preprocessor for
Modbus, and thus can be used to detect attacks us-
ing this protocol. However, in either of the two de-
tection techniques, values of the configurable param-
eters/threshold used are scenario dependent and thus
require optimisation.



7 Conclusion and Future Work

The work described in this paper has explored the
area of cyber attacks in industrial control systems.
In particular we have investigated flooding attacks on
the commonly used Modbus control systems proto-
col. The work in this paper has shown that flood-
ing attacks can disrupt the functionality of physical
systems. The paper also investigated anomaly-based
and signature-based techniques for detecting these at-
tacks. Both of the intrusion detection techniques are
shown to be successful in detecting the flooding at-
tack. However, signature-based systems are depen-
dent on threshold values, while the anomaly-based
change detection algorithm takes time to react to
the attack. Future work includes investigating how
vulnerable the Modbus protocol is to other types of
attacks such as man in the middle attacks, and to
investigate and compare different intrusion detection
techniques for these new attacks. Mitigation strate-
gies such as integrating checksums and authentication
mechanisms need to be developed to improve the secu-
rity of the Modbus protocol to make industrial control
systems more secure.
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